Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Few Shot Learning With No Labels (2012.13751v1)

Published 26 Dec 2020 in cs.CV and cs.LG

Abstract: Few-shot learners aim to recognize new categories given only a small number of training samples. The core challenge is to avoid overfitting to the limited data while ensuring good generalization to novel classes. Existing literature makes use of vast amounts of annotated data by simply shifting the label requirement from novel classes to base classes. Since data annotation is time-consuming and costly, reducing the label requirement even further is an important goal. To that end, our paper presents a more challenging few-shot setting where no label access is allowed during training or testing. By leveraging self-supervision for learning image representations and image similarity for classification at test time, we achieve competitive baselines while using \textbf{zero} labels, which is at least fewer labels than state-of-the-art. We hope that this work is a step towards developing few-shot learning methods which do not depend on annotated data at all. Our code will be publicly released.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Aditya Bharti (1 paper)
  2. N. B. Vineeth (1 paper)
  3. C. V. Jawahar (110 papers)
Citations (3)