Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fine-grained Emotion and Intent Learning in Movie Dialogues (2012.13624v1)

Published 25 Dec 2020 in cs.CL

Abstract: We propose a novel large-scale emotional dialogue dataset, consisting of 1M dialogues retrieved from the OpenSubtitles corpus and annotated with 32 emotions and 9 empathetic response intents using a BERT-based fine-grained dialogue emotion classifier. This work explains the complex pipeline used to preprocess movie subtitles and select good movie dialogues to annotate. We also describe the semi-supervised learning process followed to train a fine-grained emotion classifier to annotate these dialogues. Despite the large set of labels, our dialogue emotion classifier achieved an accuracy of $65\%$ and was used to annotate 1M emotional movie dialogues from OpenSubtitles. This scale of emotional dialogue classification has never been attempted before, both in terms of dataset size and fine-grained emotion and intent categories. Visualization techniques used to analyze the quality of the resultant dataset suggest that it conforms to the patterns of human social interaction.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Anuradha Welivita (6 papers)
  2. Yubo Xie (8 papers)
  3. Pearl Pu (16 papers)
Citations (5)