Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mining user reviews of COVID contact-tracing apps: An exploratory analysis of nine European apps (2012.13589v1)

Published 25 Dec 2020 in cs.SE

Abstract: Context: More than 50 countries have developed COVID contact-tracing apps to limit the spread of coronavirus. However, many experts and scientists cast doubt on the effectiveness of those apps. For each app, a large number of reviews have been entered by end-users in app stores. Objective: Our goal is to gain insights into the user reviews of those apps, and to find out the main problems that users have reported. Our focus is to assess the "software in society" aspects of the apps, based on user reviews. Method: We selected nine European national apps for our analysis and used a commercial app-review analytics tool to extract and mine the user reviews. For all the apps combined, our dataset includes 39,425 user reviews. Results: Results show that users are generally dissatisfied with the nine apps under study, except the Scottish ("Protect Scotland") app. Some of the major issues that users have complained about are high battery drainage and doubts on whether apps are really working. Conclusion: Our results show that more work is needed by the stakeholders behind the apps (e.g., app developers, decision-makers, public health experts) to improve the public adoption, software quality and public perception of these apps.

Citations (32)

Summary

We haven't generated a summary for this paper yet.