Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Classification, reduction and stability of toric principal bundles (2012.13540v2)

Published 25 Dec 2020 in math.AG and math.CV

Abstract: Let $X$ be a complex toric variety equipped with the action of an algebraic torus $T$, and let $G$ be a complex linear algebraic group. We classify all $T$-equivariant principal $G$-bundles $\mathcal{E}$ over $X$ and the morphisms between them. When $G$ is connected and reductive, we characterize the equivariant automorphism group $\text{Aut}_T(\mathcal{E} )$ of $\mathcal{E}$ as the intersection of certain parabolic subgroups of $G$ that arise naturally from the $T$-action on $\mathcal{E}$. We then give a criterion for the equivariant reduction of the structure group of $\mathcal{E}$ to a Levi subgroup of $G$ in terms of $\text{Aut}_T(\mathcal{E} )$. We use it to prove a principal bundle analogue of Kaneyama's theorem on equivariant splitting of torus equivariant vector bundles of small rank over a projective space. When $X$ is projective and $G$ is connected and reductive, we show that the notions of stability and equivariant stability are equivalent for any $T$-equivariant principal $G$-bundle over $X$.

Summary

We haven't generated a summary for this paper yet.