Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Rotation Equivariant Siamese Networks for Tracking (2012.13078v1)

Published 24 Dec 2020 in cs.CV

Abstract: Rotation is among the long prevailing, yet still unresolved, hard challenges encountered in visual object tracking. The existing deep learning-based tracking algorithms use regular CNNs that are inherently translation equivariant, but not designed to tackle rotations. In this paper, we first demonstrate that in the presence of rotation instances in videos, the performance of existing trackers is severely affected. To circumvent the adverse effect of rotations, we present rotation-equivariant Siamese networks (RE-SiamNets), built through the use of group-equivariant convolutional layers comprising steerable filters. SiamNets allow estimating the change in orientation of the object in an unsupervised manner, thereby facilitating its use in relative 2D pose estimation as well. We further show that this change in orientation can be used to impose an additional motion constraint in Siamese tracking through imposing restriction on the change in orientation between two consecutive frames. For benchmarking, we present Rotation Tracking Benchmark (RTB), a dataset comprising a set of videos with rotation instances. Through experiments on two popular Siamese architectures, we show that RE-SiamNets handle the problem of rotation very well and out-perform their regular counterparts. Further, RE-SiamNets can accurately estimate the relative change in pose of the target in an unsupervised fashion, namely the in-plane rotation the target has sustained with respect to the reference frame.

Citations (33)

Summary

We haven't generated a summary for this paper yet.