Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Besov and Triebel-Lizorkin Spaces on Spaces of Homogeneous Type with Applications to Boundedness of Calderón-Zygmund Operators (2012.13035v1)

Published 24 Dec 2020 in math.FA, math.AP, and math.CA

Abstract: In this article, the authors introduce Besov and Triebel-Lizorkin spaces on spaces of homogeneous type in the sense of Coifman and Weiss, prove that these (in)homogeneous Besov and Triebel-Lizorkin spaces are independent of the choices of both exp-ATIs (or exp-IATIs) and underlying spaces of distributions, and give some basic properties of these spaces. As applications, the authors show that some known function spaces coincide with certain special cases of Besov and Triebel-Lizorkin spaces and, moreover, obtain the boundedness of Calder\'on-Zygmund operators on these Besov and Triebel-Lizorkin spaces. All these results strongly depend on the geometrical properties, reflected via its dyadic cubes, of the considered space of homogeneous type. Comparing with the known theory of these spaces on metric measure spaces, a major novelty of this article is that all results presented in this article get rid of the dependence on the reverse doubling assumption of the considered measure of the underlying space and hence give a final real-variable theory of these function spaces on spaces of homogeneous type.

Citations (13)

Summary

We haven't generated a summary for this paper yet.