Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

(Achiral) Lefschetz fibration embeddings of $4$-manifolds (2012.12644v8)

Published 23 Dec 2020 in math.GT

Abstract: In this paper, we prove Lefschetz fibration embeddings of achiral as well as simplified broken (achiral) Lefschetz fibrations of compact, connected, orientable $4$-manifolds over $D2$ into the trivial Lefschetz fibration of $\mathbb CP2\times D2$ over $D2$. These results can be easily extended to achiral as well as simplified broken (achiral) Lefschetz fibrations over $\mathbb CP1.$ From this, it follows that every closed, connected, orientable $4$-manifold admits a smooth (simplified broken) Lefschetz fibration embedding in $\mathbb CP2\times \mathbb CP1.$ We provide a huge collection of bordered Lefschetz fibration which admit bordered Lefschetz fibration embeddings into a trivial Lefschetz fibration $\tilde\pi:D4\times D2\to D2.$ We also show that every closed, connected, orientable $4$-manifold $X$ admits a smooth embedding into $S4\times S2$ as well as into $S4\tilde\times S2$. From this, we get another proof of a theorem of Hirsch which states that every closed, connected, orientable $4$-manifold smoothly embeds in $\mathbb R7.$ We also discuss Lefschetz fibration embedding of non-orientable $4$-manifolds $X$, where $X$ does not admit $3$- and $4$-handles in the handle decomposition, into the trivial Lefschetz fibration of $\mathbb CP2\times D2$ over $D2$.

Summary

We haven't generated a summary for this paper yet.