Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient video annotation with visual interpolation and frame selection guidance (2012.12554v1)

Published 23 Dec 2020 in cs.CV and cs.HC

Abstract: We introduce a unified framework for generic video annotation with bounding boxes. Video annotation is a longstanding problem, as it is a tedious and time-consuming process. We tackle two important challenges of video annotation: (1) automatic temporal interpolation and extrapolation of bounding boxes provided by a human annotator on a subset of all frames, and (2) automatic selection of frames to annotate manually. Our contribution is two-fold: first, we propose a model that has both interpolating and extrapolating capabilities; second, we propose a guiding mechanism that sequentially generates suggestions for what frame to annotate next, based on the annotations made previously. We extensively evaluate our approach on several challenging datasets in simulation and demonstrate a reduction in terms of the number of manual bounding boxes drawn by 60% over linear interpolation and by 35% over an off-the-shelf tracker. Moreover, we also show 10% annotation time improvement over a state-of-the-art method for video annotation with bounding boxes [25]. Finally, we run human annotation experiments and provide extensive analysis of the results, showing that our approach reduces actual measured annotation time by 50% compared to commonly used linear interpolation.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. A. Kuznetsova (2 papers)
  2. A. Talati (1 paper)
  3. Y. Luo (334 papers)
  4. K. Simmons (1 paper)
  5. V. Ferrari (18 papers)
Citations (20)

Summary

We haven't generated a summary for this paper yet.