Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Circlet Inequalities: A New, Circulant-Based Facet-Defining Inequality for the TSP (2012.12363v1)

Published 22 Dec 2020 in math.CO, cs.DM, math.NT, and math.OC

Abstract: Facet-defining inequalities of the symmetric Traveling Salesman Problem (TSP) polytope play a prominent role in both polyhedral TSP research and state-of-the-art TSP solvers. In this paper, we introduce a new class of facet-defining inequalities, the \emph{circlet inequalities}. These inequalities were first conjectured in Gutekunst and Williamson \cite{Gut19b} when studying Circulant TSP, and they provide a bridge between polyhedral TSP research and number-theoretic investigations of Hamiltonian cycles stemming from a conjecture due to Marco Buratti in 2017. The circlet inequalities exhibit circulant symmetry by placing the same weight on all edges of a given length; our main proof exploits this symmetry to prove the validity of the circlet inequalities. We then show that the circlet inequalities are facet-defining and compute their strength following Goemans \cite{Goe95b}; they achieve the same worst-case strength as the similarly circulant crown inequalities of Naddef and Rinaldi \cite{Nad92}, but are generally stronger.

Citations (2)

Summary

We haven't generated a summary for this paper yet.