Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Disentangling images with Lie group transformations and sparse coding (2012.12071v1)

Published 11 Dec 2020 in cs.CV and cs.LG

Abstract: Discrete spatial patterns and their continuous transformations are two important regularities contained in natural signals. Lie groups and representation theory are mathematical tools that have been used in previous works to model continuous image transformations. On the other hand, sparse coding is an important tool for learning dictionaries of patterns in natural signals. In this paper, we combine these ideas in a Bayesian generative model that learns to disentangle spatial patterns and their continuous transformations in a completely unsupervised manner. Images are modeled as a sparse superposition of shape components followed by a transformation that is parameterized by n continuous variables. The shape components and transformations are not predefined, but are instead adapted to learn the symmetries in the data, with the constraint that the transformations form a representation of an n-dimensional torus. Training the model on a dataset consisting of controlled geometric transformations of specific MNIST digits shows that it can recover these transformations along with the digits. Training on the full MNIST dataset shows that it can learn both the basic digit shapes and the natural transformations such as shearing and stretching that are contained in this data.

Citations (12)

Summary

We haven't generated a summary for this paper yet.