Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Residual Matrix Product State for Machine Learning (2012.11841v2)

Published 22 Dec 2020 in cs.LG, cond-mat.str-el, cs.CV, and quant-ph

Abstract: Tensor network, which originates from quantum physics, is emerging as an efficient tool for classical and quantum machine learning. Nevertheless, there still exists a considerable accuracy gap between tensor network and the sophisticated neural network models for classical machine learning. In this work, we combine the ideas of matrix product state (MPS), the simplest tensor network structure, and residual neural network and propose the residual matrix product state (ResMPS). The ResMPS can be treated as a network where its layers map the "hidden" features to the outputs (e.g., classifications), and the variational parameters of the layers are the functions of the features of the samples (e.g., pixels of images). This is different from neural network, where the layers map feed-forwardly the features to the output. The ResMPS can equip with the non-linear activations and dropout layers, and outperforms the state-of-the-art tensor network models in terms of efficiency, stability, and expression power. Besides, ResMPS is interpretable from the perspective of polynomial expansion, where the factorization and exponential machines naturally emerge. Our work contributes to connecting and hybridizing neural and tensor networks, which is crucial to further enhance our understand of the working mechanisms and improve the performance of both models.

Citations (11)

Summary

We haven't generated a summary for this paper yet.