Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Accurate Object Association and Pose Updating for Semantic SLAM (2012.11368v3)

Published 21 Dec 2020 in cs.CV

Abstract: Current pandemic has caused the medical system to operate under high load. To relieve it, robots with high autonomy can be used to effectively execute contactless operations in hospitals and reduce cross-infection between medical staff and patients. Although semantic Simultaneous Localization and Mapping (SLAM) technology can improve the autonomy of robots, semantic object association is still a problem that is worthy of being studied. The key to solving this problem is to correctly associate multiple object measurements of one object landmark by using semantic information, and to refine the pose of object landmark in real time. To this end, we propose a hierarchical object association strategy and a pose-refinement approach. The former one consists of two levels, i.e., a short-term object association and a global one. In the first level, we employ the multiple-object-tracking for short-term object association, through which the incorrect association among objects whose locations are close and appearances are similar can be avoided. Moreover, the short-term object association can provide more abundant object appearance and more robust estimation of object pose for the global object association in the second level. To refine the object pose in the map, we develop an approach to choose the optimal object pose from all object measurements associated with an object landmark. The proposed method is comprehensively evaluated on seven simulated hospital sequences1, a real hospital environment and the KITTI dataset. Experimental results show that our method has an obviously improvement in terms of robustness and accuracy for the object association and the trajectory estimation in the semantic SLAM.

Citations (11)

Summary

We haven't generated a summary for this paper yet.