Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
117 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A comparison of learning rate selection methods in generalized Bayesian inference (2012.11349v1)

Published 21 Dec 2020 in stat.ME and stat.CO

Abstract: Generalized Bayes posterior distributions are formed by putting a fractional power on the likelihood before combining with the prior via Bayes's formula. This fractional power, which is often viewed as a remedy for potential model misspecification bias, is called the learning rate, and a number of data-driven learning rate selection methods have been proposed in the recent literature. Each of these proposals has a different focus, a different target they aim to achieve, which makes them difficult to compare. In this paper, we provide a direct head-to-head comparison of these learning rate selection methods in various misspecified model scenarios, in terms of several relevant metrics, in particular, coverage probability of the generalized Bayes credible regions. In some examples all the methods perform well, while in others the misspecification is too severe to be overcome, but we find that the so-called generalized posterior calibration algorithm tends to outperform the others in terms of credible region coverage probability.

Summary

We haven't generated a summary for this paper yet.