Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ResizeMix: Mixing Data with Preserved Object Information and True Labels (2012.11101v1)

Published 21 Dec 2020 in cs.CV

Abstract: Data augmentation is a powerful technique to increase the diversity of data, which can effectively improve the generalization ability of neural networks in image recognition tasks. Recent data mixing based augmentation strategies have achieved great success. Especially, CutMix uses a simple but effective method to improve the classifiers by randomly cropping a patch from one image and pasting it on another image. To further promote the performance of CutMix, a series of works explore to use the saliency information of the image to guide the mixing. We systematically study the importance of the saliency information for mixing data, and find that the saliency information is not so necessary for promoting the augmentation performance. Furthermore, we find that the cutting based data mixing methods carry two problems of label misallocation and object information missing, which cannot be resolved simultaneously. We propose a more effective but very easily implemented method, namely ResizeMix. We mix the data by directly resizing the source image to a small patch and paste it on another image. The obtained patch preserves more substantial object information compared with conventional cut-based methods. ResizeMix shows evident advantages over CutMix and the saliency-guided methods on both image classification and object detection tasks without additional computation cost, which even outperforms most costly search-based automatic augmentation methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Jie Qin (68 papers)
  2. Jiemin Fang (33 papers)
  3. Qian Zhang (308 papers)
  4. Wenyu Liu (146 papers)
  5. Xingang Wang (66 papers)
  6. Xinggang Wang (163 papers)
Citations (75)

Summary

We haven't generated a summary for this paper yet.