Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DynamicHS: Streamlining Reiter's Hitting-Set Tree for Sequential Diagnosis (2012.11078v1)

Published 21 Dec 2020 in cs.AI

Abstract: Given a system that does not work as expected, Sequential Diagnosis (SD) aims at suggesting a series of system measurements to isolate the true explanation for the system's misbehavior from a potentially exponential set of possible explanations. To reason about the best next measurement, SD methods usually require a sample of possible fault explanations at each step of the iterative diagnostic process. The computation of this sample can be accomplished by various diagnostic search algorithms. Among those, Reiter's HS-Tree is one of the most popular due its desirable properties and general applicability. Usually, HS-Tree is used in a stateless fashion throughout the SD process to (re)compute a sample of possible fault explanations in each iteration, each time given the latest (updated) system knowledge including all so-far collected measurements. At this, the built search tree is discarded between two iterations, although often large parts of the tree have to be rebuilt in the next iteration, involving redundant operations and calls to costly reasoning services. As a remedy to this, we propose DynamicHS, a variant of HS-Tree that maintains state throughout the diagnostic session and additionally embraces special strategies to minimize the number of expensive reasoner invocations. In this vein, DynamicHS provides an answer to a longstanding question posed by Raymond Reiter in his seminal paper from 1987. Extensive evaluations on real-world diagnosis problems prove the reasonability of the DynamicHS and testify its clear superiority to HS-Tree wrt. computation time. More specifically, DynamicHS outperformed HS-Tree in 96% of the executed sequential diagnosis sessions and, per run, the latter required up to 800% the time of the former. Remarkably, DynamicHS achieves these performance improvements while preserving all desirable properties as well as the general applicability of HS-Tree.

Citations (4)

Summary

We haven't generated a summary for this paper yet.