Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Bayesian methodology for localising acoustic emission sources in complex structures (2012.11058v1)

Published 21 Dec 2020 in cs.LG, cs.SD, and eess.AS

Abstract: In the field of structural health monitoring (SHM), the acquisition of acoustic emissions to localise damage sources has emerged as a popular approach. Despite recent advances, the task of locating damage within composite materials and structures that contain non-trivial geometrical features, still poses a significant challenge. Within this paper, a Bayesian source localisation strategy that is robust to these complexities is presented. Under this new framework, a Gaussian process is first used to learn the relationship between source locations and the corresponding difference-in-time-of-arrival values for a number of sensor pairings. As an acoustic emission event with an unknown origin is observed, a mapping is then generated that quantifies the likelihood of the emission location across the surface of the structure. The new probabilistic mapping offers multiple benefits, leading to a localisation strategy that is more informative than deterministic predictions or single-point estimates with an associated confidence bound. The performance of the approach is investigated on a structure with numerous complex geometrical features and demonstrates a favourable performance in comparison to other similar localisation methods.

Citations (42)

Summary

We haven't generated a summary for this paper yet.