Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Notes on Hazard-Free Circuits (2012.10976v1)

Published 20 Dec 2020 in cs.CC

Abstract: The problem of constructing hazard-free Boolean circuits (those avoiding electronic glitches) dates back to the 1940s and is an important problem in circuit design and even in cybersecurity. We show that a DeMorgan circuit is hazard-free if and only if the circuit produces (purely syntactically) all prime implicants as well as all prime implicates of the Boolean function it computes. This extends to arbitrary DeMorgan circuits a classical result of Eichelberger [IBM J. Res. Develop., 9 (1965)] showing this property for special depth-two circuits. Via an amazingly simple proof, we also strengthen a recent result Ikenmeyer et al. [J. ACM, 66:4 (2019)]: not only the complexities of hazard-free and monotone circuits for monotone Boolean functions do coincide, but every optimal hazard-free circuit for a monotone Boolean function must be monotone. Then we show that hazard-free circuit complexity of a very simple (non-monotone) Boolean function is super-polynomially larger than its unrestricted circuit complexity. This function accepts a Boolean n x n matrix iff every row and every column has exactly one 1-entry. Finally, we show that every Boolean function of n variables can be computed by a hazard-free circuit of size O(2n/n).

Citations (5)

Summary

We haven't generated a summary for this paper yet.