Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

List-decodability with large radius for Reed-Solomon codes (2012.10584v2)

Published 19 Dec 2020 in cs.IT, math.CO, and math.IT

Abstract: List-decodability of Reed-Solomon codes has received a lot of attention, but the best-possible dependence between the parameters is still not well-understood. In this work, we focus on the case where the list-decoding radius is of the form $r=1-\varepsilon$ for $\varepsilon$ tending to zero. Our main result states that there exist Reed-Solomon codes with rate $\Omega(\varepsilon)$ which are $(1-\varepsilon, O(1/\varepsilon))$-list-decodable, meaning that any Hamming ball of radius $1-\varepsilon$ contains at most $O(1/\varepsilon)$ codewords. This trade-off between rate and list-decoding radius is best-possible for any code with list size less than exponential in the block length. By achieving this trade-off between rate and list-decoding radius we improve a recent result of Guo, Li, Shangguan, Tamo, and Wootters, and resolve the main motivating question of their work. Moreover, while their result requires the field to be exponentially large in the block length, we only need the field size to be polynomially large (and in fact, almost-linear suffices). We deduce our main result from a more general theorem, in which we prove good list-decodability properties of random puncturings of any given code with very large distance.

Citations (13)

Summary

We haven't generated a summary for this paper yet.