Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning by Fixing: Solving Math Word Problems with Weak Supervision (2012.10582v2)

Published 19 Dec 2020 in cs.AI, cs.CL, and cs.LG

Abstract: Previous neural solvers of math word problems (MWPs) are learned with full supervision and fail to generate diverse solutions. In this paper, we address this issue by introducing a \textit{weakly-supervised} paradigm for learning MWPs. Our method only requires the annotations of the final answers and can generate various solutions for a single problem. To boost weakly-supervised learning, we propose a novel \textit{learning-by-fixing} (LBF) framework, which corrects the misperceptions of the neural network via symbolic reasoning. Specifically, for an incorrect solution tree generated by the neural network, the \textit{fixing} mechanism propagates the error from the root node to the leaf nodes and infers the most probable fix that can be executed to get the desired answer. To generate more diverse solutions, \textit{tree regularization} is applied to guide the efficient shrinkage and exploration of the solution space, and a \textit{memory buffer} is designed to track and save the discovered various fixes for each problem. Experimental results on the Math23K dataset show the proposed LBF framework significantly outperforms reinforcement learning baselines in weakly-supervised learning. Furthermore, it achieves comparable top-1 and much better top-3/5 answer accuracies than fully-supervised methods, demonstrating its strength in producing diverse solutions.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Yining Hong (23 papers)
  2. Qing Li (430 papers)
  3. Daniel Ciao (2 papers)
  4. Siyuan Huang (123 papers)
  5. Song-Chun Zhu (216 papers)
Citations (57)

Summary

We haven't generated a summary for this paper yet.