Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

$\mathbb{X}$Resolution Correspondence Networks (2012.09842v2)

Published 17 Dec 2020 in cs.CV

Abstract: In this paper, we aim at establishing accurate dense correspondences between a pair of images with overlapping field of view under challenging illumination variation, viewpoint changes, and style differences. Through an extensive ablation study of the state-of-the-art correspondence networks, we surprisingly discovered that the widely adopted 4D correlation tensor and its related learning and processing modules could be de-parameterised and removed from training with merely a minor impact over the final matching accuracy. Disabling these computational expensive modules dramatically speeds up the training procedure and allows to use 4 times bigger batch size, which in turn compensates for the accuracy drop. Together with a multi-GPU inference stage, our method facilitates the systematic investigation of the relationship between matching accuracy and up-sampling resolution of the native testing images from 1280 to 4K. This leads to discovery of the existence of an optimal resolution $\mathbb{X}$ that produces accurate matching performance surpassing the state-of-the-art methods particularly over the lower error band on public benchmarks for the proposed network.

Citations (5)

Summary

We haven't generated a summary for this paper yet.