Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Universal separability criterion for arbitrary density matrices from causal properties of separable and entangled quantum states (2012.09428v2)

Published 17 Dec 2020 in quant-ph, cond-mat.mes-hall, cond-mat.stat-mech, math-ph, and math.MP

Abstract: General physical background of Peres-Horodecki positive partial transpose (ppt-) separability criterion is revealed. Especially, the physical sense of partial transpose operation is shown to be equivalent to the "local causality reversal" (LCR-) procedure for all separable quantum systems or to the uncertainty in a global time arrow direction in all entangled cases. Using these universal causal considerations the heuristic causal separability criterion has been proposed for arbitrary $ D{N} \times D{N}$ density matrices acting in $ \mathcal{H}{D}{\otimes N} $ Hilbert spaces which describe the ensembles of $ N $ quantum systems of $ D $ eigenstates each. Resulting general formulas have been then analyzed for the widest special type of one-parametric density matrices of arbitrary dimensionality, which model equivalent quantum subsystems being equally connected (EC-) with each other by means of a single entnaglement parameter $ p $. In particular, for the family of such EC-density matrices it has been found that there exists a number of $ N $- and $ D $-dependent separability (or entanglement) thresholds $ p{th}(N,D) $ which in the case of a qubit-pair density matrix in $ \mathcal{H}{2} \otimes \mathcal{H}{2} $ Hilbert space are shown to reduce to well-known results obtained earlier by Peres [5] and Horodecki [6]. As the result, a number of remarkable features of the entanglement thresholds for EC-density matrices has been described for the first time. All novel results being obtained for the family of arbitrary EC-density matrices are shown to be applicable for a wide range of both interacting and non-interacting multi-partite quantum systems, such as arrays of qubits, spin chains, ensembles of quantum oscillators, strongly correlated quantum many-body systems with the possibility of many-body localization, etc.

Summary

We haven't generated a summary for this paper yet.