Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Clustering with Semidefinite Programming and Fixed Point Iteration (2012.09202v3)

Published 16 Dec 2020 in math.OC, cs.DS, cs.LG, and math.CO

Abstract: We introduce a novel method for clustering using a semidefinite programming (SDP) relaxation of the Max k-Cut problem. The approach is based on a new methodology for rounding the solution of an SDP relaxation using iterated linear optimization. We show the vertices of the Max k-Cut relaxation correspond to partitions of the data into at most k sets. We also show the vertices are attractive fixed points of iterated linear optimization. Each step of this iterative process solves a relaxation of the closest vertex problem and leads to a new clustering problem where the underlying clusters are more clearly defined. Our experiments show that using fixed point iteration for rounding the Max k-Cut SDP relaxation leads to significantly better results when compared to randomized rounding.

Citations (1)

Summary

We haven't generated a summary for this paper yet.