Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards robust and speculation-reduction real estate pricing models based on a data-driven strategy (2012.09115v1)

Published 26 Nov 2020 in econ.GN, cs.LG, and q-fin.EC

Abstract: In many countries, real estate appraisal is based on conventional methods that rely on appraisers' abilities to collect data, interpret it and model the price of a real estate property. With the increasing use of real estate online platforms and the large amount of information found therein, there exists the possibility of overcoming many drawbacks of conventional pricing models such as subjectivity, cost, unfairness, among others. In this paper we propose a data-driven real estate pricing model based on machine learning methods to estimate prices reducing human bias. We test the model with 178,865 flats listings from Bogot\'a, collected from 2016 to 2020. Results show that the proposed state-of-the-art model is robust and accurate in estimating real estate prices. This case study serves as an incentive for local governments from developing countries to discuss and build real estate pricing models based on large data sets that increases fairness for all the real estate market stakeholders and reduces price speculation.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)

Summary

We haven't generated a summary for this paper yet.