Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

FuseVis: Interpreting neural networks for image fusion using per-pixel saliency visualization (2012.08932v1)

Published 6 Dec 2020 in cs.CV, cs.LG, and eess.IV

Abstract: Image fusion helps in merging two or more images to construct a more informative single fused image. Recently, unsupervised learning based convolutional neural networks (CNN) have been utilized for different types of image fusion tasks such as medical image fusion, infrared-visible image fusion for autonomous driving as well as multi-focus and multi-exposure image fusion for satellite imagery. However, it is challenging to analyze the reliability of these CNNs for the image fusion tasks since no groundtruth is available. This led to the use of a wide variety of model architectures and optimization functions yielding quite different fusion results. Additionally, due to the highly opaque nature of such neural networks, it is difficult to explain the internal mechanics behind its fusion results. To overcome these challenges, we present a novel real-time visualization tool, named FuseVis, with which the end-user can compute per-pixel saliency maps that examine the influence of the input image pixels on each pixel of the fused image. We trained several image fusion based CNNs on medical image pairs and then using our FuseVis tool, we performed case studies on a specific clinical application by interpreting the saliency maps from each of the fusion methods. We specifically visualized the relative influence of each input image on the predictions of the fused image and showed that some of the evaluated image fusion methods are better suited for the specific clinical application. To the best of our knowledge, currently, there is no approach for visual analysis of neural networks for image fusion. Therefore, this work opens up a new research direction to improve the interpretability of deep fusion networks. The FuseVis tool can also be adapted in other deep neural network based image processing applications to make them interpretable.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Nishant Kumar (35 papers)
  2. Stefan Gumhold (23 papers)
Citations (10)

Summary

We haven't generated a summary for this paper yet.