Papers
Topics
Authors
Recent
2000 character limit reached

Richardson extrapolation for the iterated Galerkin solution of Urysohn integral equations with Green's kernels

Published 16 Dec 2020 in math.NA, cs.NA, and math.FA | (2012.08879v1)

Abstract: We consider a Urysohn integral operator $\mathcal{K}$ with kernel of the type of Green's function. For $r \geq 1$, a space of piecewise polynomials of degree $\leq r-1 $ with respect to a uniform partition is chosen to be the approximating space and the projection is chosen to be the orthogonal projection. Iterated Galerkin method is applied to the integral equation $x - \mathcal{K}(x) = f$. It is known that the order of convergence of the iterated Galerkin solution is $r+2$ and, at the above partition points it is $2r$. We obtain an asymptotic expansion of the iterated Galerkin solution at the partition points of the above Urysohn integral equation. Richardson extrapolation is used to improve the order of convergence. A numerical example is considered to illustrate our theoretical results.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.