Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Physical deep learning based on optimal control of dynamical systems (2012.08761v2)

Published 16 Dec 2020 in cs.NE, cs.ET, and physics.app-ph

Abstract: Deep learning is the backbone of artificial intelligence technologies, and it can be regarded as a kind of multilayer feedforward neural network. An essence of deep learning is information propagation through layers. This suggests that there is a connection between deep neural networks and dynamical systems in the sense that information propagation is explicitly modeled by the time-evolution of dynamical systems. In this study, we perform pattern recognition based on the optimal control of continuous-time dynamical systems, which is suitable for physical hardware implementation. The learning is based on the adjoint method to optimally control dynamical systems, and the deep (virtual) network structures based on the time evolution of the systems are used for processing input information. As a key example, we apply the dynamics-based recognition approach to an optoelectronic delay system and demonstrate that the use of the delay system allows for image recognition and nonlinear classifications using only a few control signals. This is in contrast to conventional multilayer neural networks, which require a large number of weight parameters to be trained. The proposed approach provides insight into the mechanisms of deep network processing in the framework of an optimal control problem and presents a pathway for realizing physical computing hardware.

Citations (13)

Summary

We haven't generated a summary for this paper yet.