Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploiting Sample Uncertainty for Domain Adaptive Person Re-Identification (2012.08733v2)

Published 16 Dec 2020 in cs.CV and cs.AI

Abstract: Many unsupervised domain adaptive (UDA) person re-identification (ReID) approaches combine clustering-based pseudo-label prediction with feature fine-tuning. However, because of domain gap, the pseudo-labels are not always reliable and there are noisy/incorrect labels. This would mislead the feature representation learning and deteriorate the performance. In this paper, we propose to estimate and exploit the credibility of the assigned pseudo-label of each sample to alleviate the influence of noisy labels, by suppressing the contribution of noisy samples. We build our baseline framework using the mean teacher method together with an additional contrastive loss. We have observed that a sample with a wrong pseudo-label through clustering in general has a weaker consistency between the output of the mean teacher model and the student model. Based on this finding, we propose to exploit the uncertainty (measured by consistency levels) to evaluate the reliability of the pseudo-label of a sample and incorporate the uncertainty to re-weight its contribution within various ReID losses, including the identity (ID) classification loss per sample, the triplet loss, and the contrastive loss. Our uncertainty-guided optimization brings significant improvement and achieves the state-of-the-art performance on benchmark datasets.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Kecheng Zheng (48 papers)
  2. Cuiling Lan (60 papers)
  3. Wenjun Zeng (130 papers)
  4. Zhizheng Zhang (60 papers)
  5. Zheng-Jun Zha (144 papers)
Citations (150)

Summary

We haven't generated a summary for this paper yet.