Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Responsible Disclosure of Generative Models Using Scalable Fingerprinting (2012.08726v5)

Published 16 Dec 2020 in cs.CR, cs.CV, cs.CY, cs.GR, and cs.LG

Abstract: Over the past years, deep generative models have achieved a new level of performance. Generated data has become difficult, if not impossible, to be distinguished from real data. While there are plenty of use cases that benefit from this technology, there are also strong concerns on how this new technology can be misused to generate deep fakes and enable misinformation at scale. Unfortunately, current deep fake detection methods are not sustainable, as the gap between real and fake continues to close. In contrast, our work enables a responsible disclosure of such state-of-the-art generative models, that allows model inventors to fingerprint their models, so that the generated samples containing a fingerprint can be accurately detected and attributed to a source. Our technique achieves this by an efficient and scalable ad-hoc generation of a large population of models with distinct fingerprints. Our recommended operation point uses a 128-bit fingerprint which in principle results in more than $10{38}$ identifiable models. Experiments show that our method fulfills key properties of a fingerprinting mechanism and achieves effectiveness in deep fake detection and attribution. Code and models are available at https://github.com/ningyu1991/ScalableGANFingerprints .

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Ning Yu (78 papers)
  2. Vladislav Skripniuk (2 papers)
  3. Dingfan Chen (13 papers)
  4. Larry Davis (41 papers)
  5. Mario Fritz (160 papers)
Citations (79)