Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Deep Graph Neural Networks Architecture Design: From Global Pyramid-like Shrinkage Skeleton to Local Topology Link Rewiring (2012.08717v1)

Published 16 Dec 2020 in cs.LG and cs.AI

Abstract: Expressivity plays a fundamental role in evaluating deep neural networks, and it is closely related to understanding the limit of performance improvement. In this paper, we propose a three-pipeline training framework based on critical expressivity, including global model contraction, weight evolution, and link's weight rewiring. Specifically, we propose a pyramidal-like skeleton to overcome the saddle points that affect information transfer. Then we analyze the reason for the modularity (clustering) phenomenon in network topology and use it to rewire potential erroneous weighted links. We conduct numerical experiments on node classification and the results confirm that the proposed training framework leads to a significantly improved performance in terms of fast convergence and robustness to potential erroneous weighted links. The architecture design on GNNs, in turn, verifies the expressivity of GNNs from dynamics and topological space aspects and provides useful guidelines in designing more efficient neural networks.

Summary

We haven't generated a summary for this paper yet.