Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
60 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
8 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Closer Look at the Robustness of Vision-and-Language Pre-trained Models (2012.08673v2)

Published 15 Dec 2020 in cs.CV and cs.CL

Abstract: Large-scale pre-trained multimodal transformers, such as ViLBERT and UNITER, have propelled the state of the art in vision-and-language (V+L) research to a new level. Although achieving impressive performance on standard tasks, to date, it still remains unclear how robust these pre-trained models are. To investigate, we conduct a host of thorough evaluations on existing pre-trained models over 4 different types of V+L specific model robustness: (i) Linguistic Variation; (ii) Logical Reasoning; (iii) Visual Content Manipulation; and (iv) Answer Distribution Shift. Interestingly, by standard model finetuning, pre-trained V+L models already exhibit better robustness than many task-specific state-of-the-art methods. To further enhance model robustness, we propose Mango, a generic and efficient approach that learns a Multimodal Adversarial Noise GeneratOr in the embedding space to fool pre-trained V+L models. Differing from previous studies focused on one specific type of robustness, Mango is task-agnostic, and enables universal performance lift for pre-trained models over diverse tasks designed to evaluate broad aspects of robustness. Comprehensive experiments demonstrate that Mango achieves new state of the art on 7 out of 9 robustness benchmarks, surpassing existing methods by a significant margin. As the first comprehensive study on V+L robustness, this work puts robustness of pre-trained models into sharper focus, pointing new directions for future study.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Linjie Li (89 papers)
  2. Zhe Gan (135 papers)
  3. Jingjing Liu (139 papers)
Citations (40)