Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Analysis of obstacles immersed in viscous fluids using Brinkman's law for steady Stokes and Navier-Stokes equations (2012.08635v2)

Published 15 Dec 2020 in math.AP, cs.NA, and math.NA

Abstract: From the steady Stokes and Navier-Stokes models, a penalization method has been considered by several authors for approximating those fluid equations around obstacles. In this work, we present a justification for using fictitious domains to study obstacles immersed in incompressible viscous fluids through a simplified version of Brinkman's law for porous media. If the scalar function $\psi$ is considered as the inverse of permeability, it is possible to study the singularities of $\psi$ as approximations of obstacles (when $\psi$ tends to $\infty$) or of the domain corresponding to the fluid (when $\psi = 0$ or is very close to $0$). The strong convergence of the solution of the perturbed problem to the solution of the strong problem is studied, also considering error estimates that depend on the penalty parameter, both for fluids modeled with the Stokes and Navier-Stokes equations with inhomogeneous boundary conditions. A numerical experiment is presented that validates this result and allows to study the application of this perturbed problem simulation of flows and the identification of obstacles.

Citations (4)

Summary

We haven't generated a summary for this paper yet.