Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Motivic cohomology and infinitesimal group schemes (2012.08068v1)

Published 15 Dec 2020 in math.AG

Abstract: For $k$ a perfect field of characteristic $p>0$ and $G/k$ a split reductive group with $p$ a non-torsion prime for $G,$ we compute the mod $p$ motivic cohomology of the geometric classifying space $BG_{(r)}$, where $G_{(r)}$ is the $r$th Frobenius kernel of $G.$ Our main tool is a motivic version of the Eilenberg-Moore spectral sequence, due to Krishna. For a flat affine group scheme $G/k$ of finite type, we define a cycle class map from the mod $p$ motivic cohomology of the classifying space $BG$ to the mod $p$ \'etale motivic cohomology of the classifying stack $\mathcal{B}G.$ This also gives a cycle class map into the Hodge cohomology of $\mathcal{B}G.$ We study the cycle class map for some examples, including Frobenius kernels.

Summary

We haven't generated a summary for this paper yet.