Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Odd-One-Out Representation Learning (2012.07966v1)

Published 14 Dec 2020 in cs.LG

Abstract: The effective application of representation learning to real-world problems requires both techniques for learning useful representations, and also robust ways to evaluate properties of representations. Recent work in disentangled representation learning has shown that unsupervised representation learning approaches rely on fully supervised disentanglement metrics, which assume access to labels for ground-truth factors of variation. In many real-world cases ground-truth factors are expensive to collect, or difficult to model, such as for perception. Here we empirically show that a weakly-supervised downstream task based on odd-one-out observations is suitable for model selection by observing high correlation on a difficult downstream abstract visual reasoning task. We also show that a bespoke metric-learning VAE model which performs highly on this task also out-performs other standard unsupervised and a weakly-supervised disentanglement model across several metrics.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Salman Mohammadi (2 papers)
  2. Anders Kirk Uhrenholt (2 papers)
  3. Bjørn Sand Jensen (9 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.