Improved Bohr inequalities for certain class of harmonic univalent functions (2012.07837v1)
Abstract: Let $ \mathcal{H} $ be the class of complex-valued harmonic mappings $ f=h+\bar{g}$ defined in the unit disk $ \mathbb{D} : ={z\in\mathbb{C} : |z|<1} $, where $ h $ and $ g $ are analytic functions in $ \mathbb{D} $ with the normalization $ h(0)=0=h{\prime}(0)-1 $ and $ g(0)=0 $. Let $ \mathcal{H}{0}={f=h+\bar{g}\in\mathcal{H} : g{\prime}(0)=0}. $ Ghosh and Vasudevrao \cite{Ghosh-Vasudevarao-BAMS-2020} have studied the following interesting harmonic univalent class $ \mathcal{P}{0}{\mathcal{H}}(M) $ which is defined by $$\mathcal{P}{0}_{\mathcal{H}}(M) :={f=h+\overline{g} \in \mathcal{H}{0}: \mathrm{Re} (zh{\prime\prime}(z))> -M+|zg{\prime\prime}(z)|,\; z \in \mathbb{D}\; \mbox{and}\;\; M>0}. $$ In this paper, we obtain the sharp Bohr-Rogosinski inequality, improved Bohr inequality, refined Bohr inequality and Bohr-type inequality for the class $ \mathcal{P}{\mathcal{H}}{0}(M) $.