Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Building Deep Learning Models to Predict Mortality in ICU Patients (2012.07585v1)

Published 11 Dec 2020 in cs.LG

Abstract: Mortality prediction in intensive care units is considered one of the critical steps for efficiently treating patients in serious condition. As a result, various prediction models have been developed to address this problem based on modern electronic healthcare records. However, it becomes increasingly challenging to model such tasks as time series variables because some laboratory test results such as heart rate and blood pressure are sampled with inconsistent time frequencies. In this paper, we propose several deep learning models using the same features as the SAPS II score. To derive insight into the proposed model performance. Several experiments have been conducted based on the well known clinical dataset Medical Information Mart for Intensive Care III. The prediction results demonstrate the proposed model's capability in terms of precision, recall, F1 score, and area under the receiver operating characteristic curve.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Huachuan Wang (4 papers)
  2. Yuanfei Bi (2 papers)