Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Higher order information volume of mass function (2012.07507v1)

Published 14 Dec 2020 in cs.IT, math.IT, and math.PR

Abstract: For a certain moment, the information volume represented in a probability space can be accurately measured by Shannon entropy. But in real life, the results of things usually change over time, and the prediction of the information volume contained in the future is still an open question. Deng entropy proposed by Deng in recent years is widely applied on measuring the uncertainty, but its physical explanation is controversial. In this paper, we give Deng entropy a new explanation based on the fractal idea, and proposed its generalization called time fractal-based (TFB) entropy. The TFB entropy is recognized as predicting the uncertainty over a period of time by splitting times, and its maximum value, called higher order information volume of mass function (HOIVMF), can express more uncertain information than all of existing methods.

Citations (31)

Summary

We haven't generated a summary for this paper yet.