Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Low-Rank Hankel Matrix Denoising (2012.07433v1)

Published 14 Dec 2020 in eess.SY, cs.SY, and eess.SP

Abstract: The low-complexity assumption in linear systems can often be expressed as rank deficiency in data matrices with generalized Hankel structure. This makes it possible to denoise the data by estimating the underlying structured low-rank matrix. However, standard low-rank approximation approaches are not guaranteed to perform well in estimating the noise-free matrix. In this paper, recent results in matrix denoising by singular value shrinkage are reviewed. A novel approach is proposed to solve the low-rank Hankel matrix denoising problem by using an iterative algorithm in structured low-rank approximation modified with data-driven singular value shrinkage. It is shown numerically in both the input-output trajectory denoising and the impulse response denoising problems, that the proposed method performs the best in terms of estimating the noise-free matrix among existing algorithms of low-rank matrix approximation and denoising.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Mingzhou Yin (20 papers)
  2. Roy S. Smith (74 papers)
Citations (6)

Summary

We haven't generated a summary for this paper yet.