Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

GAN-based Recommendation with Positive-Unlabeled Sampling (2012.06901v1)

Published 12 Dec 2020 in cs.IR and cs.AI

Abstract: Recommender systems are popular tools for information retrieval tasks on a large variety of web applications and personalized products. In this work, we propose a Generative Adversarial Network based recommendation framework using a positive-unlabeled sampling strategy. Specifically, we utilize the generator to learn the continuous distribution of user-item tuples and design the discriminator to be a binary classifier that outputs the relevance score between each user and each item. Meanwhile, positive-unlabeled sampling is applied in the learning procedure of the discriminator. Theoretical bounds regarding positive-unlabeled sampling and optimalities of convergence for the discriminators and the generators are provided. We show the effectiveness and efficiency of our framework on three publicly accessible data sets with eight ranking-based evaluation metrics in comparison with thirteen popular baselines.

Citations (3)

Summary

We haven't generated a summary for this paper yet.