Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

LiveChess2FEN: a Framework for Classifying Chess Pieces based on CNNs (2012.06858v1)

Published 12 Dec 2020 in cs.CV and cs.LG

Abstract: Automatic digitization of chess games using computer vision is a significant technological challenge. This problem is of much interest for tournament organizers and amateur or professional players to broadcast their over-the-board (OTB) games online or analyze them using chess engines. Previous work has shown promising results, but the recognition accuracy and the latency of state-of-the-art techniques still need further enhancements to allow their practical and affordable deployment. We have investigated how to implement them on an Nvidia Jetson Nano single-board computer effectively. Our first contribution has been accelerating the chessboard's detection algorithm. Subsequently, we have analyzed different Convolutional Neural Networks for chess piece classification and how to map them efficiently on our embedded platform. Notably, we have implemented a functional framework that automatically digitizes a chess position from an image in less than 1 second, with 92% accuracy when classifying the pieces and 95% when detecting the board.

Citations (6)

Summary

We haven't generated a summary for this paper yet.