Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive Histogram-Based Gradient Boosted Trees for Federated Learning (2012.06670v1)

Published 11 Dec 2020 in cs.LG and cs.DC

Abstract: Federated Learning (FL) is an approach to collaboratively train a model across multiple parties without sharing data between parties or an aggregator. It is used both in the consumer domain to protect personal data as well as in enterprise settings, where dealing with data domicile regulation and the pragmatics of data silos are the main drivers. While gradient boosted tree implementations such as XGBoost have been very successful for many use cases, its federated learning adaptations tend to be very slow due to using cryptographic and privacy methods and have not experienced widespread use. We propose the Party-Adaptive XGBoost (PAX) for federated learning, a novel implementation of gradient boosting which utilizes a party adaptive histogram aggregation method, without the need for data encryption. It constructs a surrogate representation of the data distribution for finding splits of the decision tree. Our experimental results demonstrate strong model performance, especially on non-IID distributions, and significantly faster training run-time across different data sets than existing federated implementations. This approach makes the use of gradient boosted trees practical in enterprise federated learning.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Yuya Jeremy Ong (5 papers)
  2. Yi Zhou (438 papers)
  3. Nathalie Baracaldo (34 papers)
  4. Heiko Ludwig (17 papers)
Citations (21)

Summary

We haven't generated a summary for this paper yet.