Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A new automatic approach to seed image analysis: From acquisition to segmentation (2012.06414v1)

Published 11 Dec 2020 in cs.CV

Abstract: Image Analysis offers a new tool for classifying vascular plant species based on the morphological and colorimetric features of the seeds, and has made significant contributions in systematic studies. However, in order to extract the morphological and colorimetric features, it is necessary to segment the image containing the samples to be analysed. This stage represents one of the most challenging steps in image processing, as it is difficult to separate uniform and homogeneous objects from the background. In this paper, we present a new, open source plugin for the automatic segmentation of an image of a seed sample. This plugin was written in Java to allow it to work with ImageJ open source software. The new plugin was tested on a total of 3,386 seed samples from 120 species belonging to the Fabaceae family. Digital images were acquired using a flatbed scanner. In order to test the efficacy of this approach in terms of identifying the edges of objects and separating them from the background, each sample was scanned using four different hues of blue for the background, and a total of 480 digital images were elaborated. The performance of the new plugin was compared with a method based on double image acquisition (with a black and white background) using the same seed samples, in which images were manually segmented using the Core ImageJ plugin. The results showed that the new plugin was able to segment all of the digital images without generating any object detection errors. In addition, the new plugin was able to segment images within an average of 0.02 s, while the average time for execution with the manual method was 63 s. This new open source plugin is proven to be able to work on a single image, and to be highly efficient in terms of time and segmentation when working with large numbers of images and a wide diversity of shapes.

Citations (3)

Summary

We haven't generated a summary for this paper yet.