Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Artificial Intelligence for COVID-19 Detection -- A state-of-the-art review (2012.06310v1)

Published 25 Nov 2020 in cs.LG, cs.AI, and cs.CV

Abstract: The emergence of COVID-19 has necessitated many efforts by the scientific community for its proper management. An urgent clinical reaction is required in the face of the unending devastation being caused by the pandemic. These efforts include technological innovations for improvement in screening, treatment, vaccine development, contact tracing and, survival prediction. The use of Deep Learning (DL) and AI can be sought in all of the above-mentioned spheres. This paper aims to review the role of Deep Learning and Artificial intelligence in various aspects of the overall COVID-19 management and particularly for COVID-19 detection and classification. The DL models are developed to analyze clinical modalities like CT scans and X-Ray images of patients and predict their pathological condition. A DL model aims to detect the COVID-19 pneumonia, classify and distinguish between COVID-19, Community-Acquired Pneumonia (CAP), Viral and Bacterial pneumonia, and normal conditions. Furthermore, sophisticated models can be built to segment the affected area in the lungs and quantify the infection volume for a better understanding of the extent of damage. Many models have been developed either independently or with the help of pre-trained models like VGG19, ResNet50, and AlexNet leveraging the concept of transfer learning. Apart from model development, data preprocessing and augmentation are also performed to cope with the challenge of insufficient data samples often encountered in medical applications. It can be evaluated that DL and AI can be effectively implemented to withstand the challenges posed by the global emergency

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Parsa Sarosh (1 paper)
  2. Shabir A. Parah (1 paper)
  3. Romany F Mansur (1 paper)
  4. G. M. Bhat (1 paper)
Citations (3)