Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generate Your Counterfactuals: Towards Controlled Counterfactual Generation for Text (2012.04698v2)

Published 8 Dec 2020 in cs.CL, cs.AI, and cs.LG

Abstract: Machine Learning has seen tremendous growth recently, which has led to larger adoption of ML systems for educational assessments, credit risk, healthcare, employment, criminal justice, to name a few. The trustworthiness of ML and NLP systems is a crucial aspect and requires a guarantee that the decisions they make are fair and robust. Aligned with this, we propose a framework GYC, to generate a set of counterfactual text samples, which are crucial for testing these ML systems. Our main contributions include a) We introduce GYC, a framework to generate counterfactual samples such that the generation is plausible, diverse, goal-oriented, and effective, b) We generate counterfactual samples, that can direct the generation towards a corresponding condition such as named-entity tag, semantic role label, or sentiment. Our experimental results on various domains show that GYC generates counterfactual text samples exhibiting the above four properties. GYC generates counterfactuals that can act as test cases to evaluate a model and any text debiasing algorithm.

Citations (91)

Summary

We haven't generated a summary for this paper yet.