Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Equidistribution of primitive lattices in $\mathbb{R}^n$ (2012.04508v2)

Published 8 Dec 2020 in math.NT

Abstract: We count primitive lattices of rank $d$ inside $\mathbb{Z}{n}$ as their covolume tends to infinity, with respect to certain parameters of such lattices. These parameters include, for example, the subsapce that a lattice spans, namely its projection to the Grassmannian; its homothety class; and its equivalence class modulo rescaling and rotation, often referred to as a shape. We add to a prior work of Schmidt by allowing sets in the spaces of parameters that are general enough to conclude joint equidistribution of these parameters. In addition to the primitive $d$-lattices themselves, we also consider their orthogonal complements in $\mathbb{Z}{n}$, and show that the equidistribution occurs jointly for primitive lattices and their orthogonal complements. Finally, our asymptotic formulas for the number of primitive lattices include an explicit error term.

Summary

We haven't generated a summary for this paper yet.