Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Functional calculus for a bounded $C_0$-semigroup on Hilbert space (2012.04440v3)

Published 8 Dec 2020 in math.FA

Abstract: We introduce a new Banach algebra ${\mathcal A}({\mathbb C}+)$ of bounded analytic functions on ${\mathbb C}+={z\in{\mathbb C}\, :\, {\rm Re}(z)>0}$ which is an analytic version of the Figa-Talamenca-Herz algebras on ${\mathbb R}$. Then we prove that the negative generator $A$ of any bounded $C_0$-semigroup on Hilbert space $H$ admits a bounded (natural) functional calculus $\rho_A\colon {\mathcal A}({\mathbb C}+)\to B(H)$. We prove that this is an improvement of the bounded functional calculus ${\mathcal B}({\mathbb C}+)\to B(H)$ recently devised by Batty-Gomilko-Tomilov on a certain Besov algebra ${\mathcal B}({\mathbb C}+)$ of analytic functions on ${\mathbb C}+$, by showing that ${\mathcal B}({\mathbb C}+)\subset {\mathcal A}({\mathbb C}+)$ and ${\mathcal B}({\mathbb C}+)\not= {\mathcal A}({\mathbb C}+)$. In the Banach space setting, we give similar results for negative generators of $\gamma$-bounded $C_0$-semigroups. The study of ${\mathcal A}({\mathbb C}_+)$ requires to deal with Fourier multipliers on the Hardy space $H1({\mathbb R})\subset L1({\mathbb R})$ of analytic functions.

Summary

We haven't generated a summary for this paper yet.