Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quadratic Regularization of Data-Enabled Predictive Control: Theory and Application to Power Converter Experiments (2012.04434v2)

Published 8 Dec 2020 in eess.SY and cs.SY

Abstract: Data-driven control that circumvents the process of system identification by providing optimal control inputs directly from system data has attracted renewed attention in recent years. In this paper, we focus on understanding the effects of the regularization on the data-enabled predictive control (DeePC) algorithm. We provide theoretical motivation and interpretation for including a quadratic regularization term. Our analysis shows that the quadratic regularization term leads to robust and optimal solutions with regards to disturbances affecting the data. Moreover, when the input/output constraints are inactive, the quadratic regularization leads to a closed-form solution of the DeePC algorithm and thus enables fast calculations. On this basis, we propose a framework for data-driven synchronization and power regulations of power converters, which is tested by high-fidelity simulations and experiments.

Citations (24)

Summary

We haven't generated a summary for this paper yet.