Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A General Computational Framework to Measure the Expressiveness of Complex Networks Using a Tighter Upper Bound of Linear Regions (2012.04428v1)

Published 8 Dec 2020 in cs.LG and stat.ML

Abstract: The expressiveness of deep neural network (DNN) is a perspective to understandthe surprising performance of DNN. The number of linear regions, i.e. pieces thata piece-wise-linear function represented by a DNN, is generally used to measurethe expressiveness. And the upper bound of regions number partitioned by a rec-tifier network, instead of the number itself, is a more practical measurement ofexpressiveness of a rectifier DNN. In this work, we propose a new and tighter up-per bound of regions number. Inspired by the proof of this upper bound and theframework of matrix computation in Hinz & Van de Geer (2019), we propose ageneral computational approach to compute a tight upper bound of regions numberfor theoretically any network structures (e.g. DNN with all kind of skip connec-tions and residual structures). Our experiments show our upper bound is tighterthan existing ones, and explain why skip connections and residual structures canimprove network performance.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Yutong Xie (68 papers)
  2. Gaoxiang Chen (1 paper)
  3. Quanzheng Li (123 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.