Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Privacy-Preserving Spam Filtering using Functional Encryption (2012.04163v1)

Published 8 Dec 2020 in cs.CR and cs.NE

Abstract: Traditional spam classification requires the end-user to reveal the content of its received email to the spam classifier which violates the privacy. Spam classification over encrypted emails enables the classifier to classify spam email without accessing the email, hence protects the privacy of email content. In this paper, we construct a spam classification framework that enables the classification of encrypted emails. Our classification model is based on a neural network with a quadratic network part and a multi-layer perception network part. The quadratic network architecture is compatible with the operation of an existing quadratic functional encryption scheme that enables our classification to predict the label of encrypted emails without revealing the associated plain-text email. The evaluation results on real-world spam datasets indicate that our proposed spam classification model achieves an accuracy of over 96%.

Citations (2)

Summary

We haven't generated a summary for this paper yet.