Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Parameter Efficient Multimodal Transformers for Video Representation Learning (2012.04124v2)

Published 8 Dec 2020 in cs.CV

Abstract: The recent success of Transformers in the language domain has motivated adapting it to a multimodal setting, where a new visual model is trained in tandem with an already pretrained LLM. However, due to the excessive memory requirements from Transformers, existing work typically fixes the LLM and train only the vision module, which limits its ability to learn cross-modal information in an end-to-end manner. In this work, we focus on reducing the parameters of multimodal Transformers in the context of audio-visual video representation learning. We alleviate the high memory requirement by sharing the parameters of Transformers across layers and modalities; we decompose the Transformer into modality-specific and modality-shared parts so that the model learns the dynamics of each modality both individually and together, and propose a novel parameter sharing scheme based on low-rank approximation. We show that our approach reduces parameters of the Transformers up to 97$\%$, allowing us to train our model end-to-end from scratch. We also propose a negative sampling approach based on an instance similarity measured on the CNN embedding space that our model learns together with the Transformers. To demonstrate our approach, we pretrain our model on 30-second clips (480 frames) from Kinetics-700 and transfer it to audio-visual classification tasks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Sangho Lee (25 papers)
  2. Youngjae Yu (72 papers)
  3. Gunhee Kim (74 papers)
  4. Thomas Breuel (16 papers)
  5. Jan Kautz (215 papers)
  6. Yale Song (41 papers)
Citations (76)