Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stochastic optimization with momentum: convergence, fluctuations, and traps avoidance (2012.04002v3)

Published 7 Dec 2020 in math.OC, math.PR, and stat.ML

Abstract: In this paper, a general stochastic optimization procedure is studied, unifying several variants of the stochastic gradient descent such as, among others, the stochastic heavy ball method, the Stochastic Nesterov Accelerated Gradient algorithm (S-NAG), and the widely used Adam algorithm. The algorithm is seen as a noisy Euler discretization of a non-autonomous ordinary differential equation, recently introduced by Belotto da Silva and Gazeau, which is analyzed in depth. Assuming that the objective function is non-convex and differentiable, the stability and the almost sure convergence of the iterates to the set of critical points are established. A noteworthy special case is the convergence proof of S-NAG in a non-convex setting. Under some assumptions, the convergence rate is provided under the form of a Central Limit Theorem. Finally, the non-convergence of the algorithm to undesired critical points, such as local maxima or saddle points, is established. Here, the main ingredient is a new avoidance of traps result for non-autonomous settings, which is of independent interest.

Citations (12)

Summary

We haven't generated a summary for this paper yet.